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Abstract .

This research is a natural progression of our efforts which begun with the intro-

duction of a new research paradigm in Machine Perception, called Active Perception.

There we have stated that Active Perception is a problem of intelligent control strate-

gies applied to data acquisition processes which will depend on the current state of

the data interpretation, including recognition. In this paper we treat the disassem-

bly/ assembly problem as an Active Perception problem, and we present a method for

autonomous disassembly based on this framework.

1 Introduction

Perceptual activity is exploratory, probing, searching [1], [2]. Percepts do not simply fall

onto sensors as rain falls onto the ground. We do not just see, we look. And in the course

of looking, our pupils adjust to the level of illumination, our eyes bring the world into sharp

focus, our eyes converge or diverge, we move our heads or change our position to get a better

view of something, and sometimes we even put on spectacles.

For robotic systems, this Active Perception approach has several consequences:

1. If one allows more than one measurement to be taken, then one must consider how

they should be combined. This is the multi-sensory integration problem.

2. If one accepts that perceptual activity is probing and searching, then data evaluation

techniques must be used to measure how well the system is accomplishing its perceptual

task and to determine whether a feedback mechanism is needed.
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3. If one accepts that perceptual activity is exploratory, then one must determine what

must be built into the system in order to perform the exploration, i.e., what is a priori
and what is data driven?

The next development in our program was the realization that perception is not only

sensing but also involves manipulation [4]. For example, consider the problem of a static

scene segmentation. This has been shown convincingly in our recent work [13] and in the

paper: "Segmentation via Manipulation" [14] where we argued that a static scene that

contains more than one object/part most of the time cannot be segmented only by vision or in

general by any non contact sensing. Exception to this is only the case when the objects/parts

are physically separated so that the noncontact sensor can measure this separation or one

knows a great deal of a priori knowledge about the objects (their geometry, material, etc.).
We assume no such knowledge is available. Instead, we assume that the scene is reachable

with a manipulator. Hence the problem represents a class of problems of segmentation that

occur in an assembly line, bin picking, organizing a desk top and their like. The typical
properties of this class of problems are:

.

.

.

The objects are rigid. Their size and weight is such that they are manipulable with a

suitable end effector. The number of objects in the scene is such that each piece can

be examined and manipulated in a reasonable amount of time, i.e. the complexity of
the scene is bounded.

The scene is accessible to the sensors, i.e. the whole scene is visible, although some

parts may be occluded, and reachable by the manipulator.

There is a well defined goal which is detectable by the available sensors. Specifically

the goal maybe: an empty scene, or an organized/ordered scene.

The segmentation problem as is specified above is a sub-class of the more general disas-

sembly problem, i.e. taking things apart which may be viewed as a process of getting insight

into how to assemble objects, i.e. how to put pieces together. It is not difficult to see that

this is how children learn about part/whole relationships and in general about an assembly

process. But the question still remains; what perceptual information should be stored when

such disassembly process takes place and is it enough for performing the assembly, i.e. the

reverse tasks? This problem is what we call the Machine Perceptual Development and is at

the heart of this paper.

One may ask how is Machine Perceptual Development related to machine learning? Rel-

evant work on machine learning can be divided into two categories. One involves the appli-

cation of the neural network paradigm, the other is studies of learning in the AI tradition.

The neural net paradigm addresses problems at the low-level perception, learning patterns

from the signal, but this approach does not answer the questions of data reduction from a

signal that we are proposing. Moreover, we are trying to determine a useful division between

"innate" structure and learned properties, that is to say, between a priori and data driven

information. The traditional AI approach to learning has most frequently relied too much on
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a priori information and hasneglectedthe data driven part. We believethat this approach
is too limiting.

2 The Two Part Disassembly Problem

We begin with the problem of the two part disassembly. The overall flow diagram of our

methodology is as follows: Calibration/Exploration, Disassembly, Assembly. The fundamen-

tal issue is the REPRESENTATION. The case still has to be made for new representations

that develop during an activity and that respect both the sensory apparatus and the task.

Traditionally, the Computer Vision community has experimented with geometric CAD mod-

els for analysis, arguing that if CAD models are useful for making objects, then they should

be equally useful for recognizing them. But such an argument is questionable. A designer

creates a CAD model by specifying surface representations with detailed boundaries and ex-

plicit dimensions. To represent the internal dimensions, s/he shows cross sections. Finally,

s/he specifies both the material and finish of the surface. Thus CAD models reflect how to

synthesize an object during both its design phase and its manufacture.

The question is whether this same representation is useful for robotic analysis, i.e., object

recognition necessary for disassembly and assembly. We believe the answer is no. First, the

limits of sensors determine the limits to which a robotic system can differentiate between

different materials, different colors, etc. A robot may not even have the sensors necessary to

measure some of the properties that the designer has specified. For example, to distinguish

metallic and non-metallic materials, a sensor is needed to measure conductivity. Secondly,

the spatial resolution of a sensor limits how well a robotic system can measure spatial details:

there is no point in representing a dimension of curvature with tight tolerances if a sensor

cannot discriminate it. Thirdly, the noise of the perceptual system determines the minimal

discriminability between different categories of objects. Finally, the robot may not know the

substance/material of the object it is sensing. Hence it must have an apparatus to find such

things out.

What follows in the subsequent sections is: First, the description of the Calibration

process which will determine the physical and some geometric characteristics of the material

(hardness, coefficient of friction, surface texture, conductivity , spectral properties such as

reflectivity, weight/ density and their like). Second, the description of disassembly process

and the division of build in procedures versus data driven part. Finally, the test of memory

via assembly process.

2.1 Calibration/Exploratory Procedures

Unlike much of the current robotics effort we do not assume a priori knowledge of the

physical nor geometric properties of objects that we deal with. In order to find out one must

have build in capabilities, called Exploratory Procedures (EPs) [9] that seek out different
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physical attributes. For this work we shall consider the following EPs: EP that determines

the surface reflectance, discriminates between lambertian and highly reflective surfaces [3],

EP for determining the hardness of the material and surface texture [12]. Notice that these

EPs are static tests, i.e. the object is not manipulated. These EPs will give us the expected

range of values for hardness, surface reflectance and surface texture. In the future we will

add more attributes, such as electrical and thermal conductivity, measure of elasticity and

deformability [11]. Furthermore, weight and density of the material as well moving parts,

like objects on hinges, will be explored in a dynamic mode.

2.2 The Disassembly/Assembly System

First we shall describe the hardware configuration also shown in Figure 1. For the disas-

sembly/assembly task, the robot is a six degree freedom PUMA 560 manipulator equipped

with a range finder and/or a pair of CCD cameras, called the LOOKER and another six

degree freedom PUMA 560 manipulator and a hand, called the FEELER. The LOOKER,

depending on the need, can also have a color camera system or other non-contact electromag-

netic wave measuring detector (infrared is one possibility). The FEELER has a force/torque

sensor in its wrist and hand. The hand has three fingers and a rigid palm. Each finger has

one and a half degrees of freedom. The sensors on the hand are: Position encoders, force

sensors at each joint of the finger, tactile array at each of the finger tip and on the palm,

Thermal conductivity sensor on the palm, ultrasound sensor on the outside of the hand. In

addition, the hand has access to various tools that it can pick up under its control. Both of

the FEELER and the LOOKER are under software control of strategies for data acquisition

and manipulation. What are the Logical Components of the System? They are:

.

.

3.

.

,

.

SENSOR MODELS that describe: The range of admissible values, the noise which

determines the resolution, the geometry which determines the accessibility of the sensor

to the investigated object or of its part.

TASK MODEL: In this case: a two part decomposition/separation.

PARAMETERS: About the physics/geometry of an object obtained through calibra-
tion EPs.

MANIPULATION PROCEDURES: such as: Push, Pull, Lift, Press, Turn, Twist,

Grasp, Squeeze.

GEOMETRIC PROCEDURES: Shape description, especially detection of discontinu-

ities, where is the binding force, size (length, area, volume) determination.

CONTROL STRUCTURE: (State, Actions), Priorities if more than one possible ac-

tion, (here one may consider some cost/benefit function to make the right choice).

Priority of sensing: how to start? (here we start with vision!). Detection of the goal

state, i.e. two separate parts.
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The Block diagram reflectingthe logical componentsfor disassembly/assemblyis shown
in Figure 2. This diagram is very similar to the one used in Tsikos's Ph.D thesis [13] for
segmentinga complexscene.We haveshownthat:

1. Segmentationof an arbitrary scenerequiresnot only a visual sensor,but also some
manipulation actions, suchas pushing,pulling, graspingand their like.

2. The interaction betweenthe sensorsand manipulation and the scenecan generallybe
sufficiently modeledby a finite state,non-deterministicTuring Machine.

3. The critical considerationis the testability of the goalstate. (In Tsikos' caseit wasan
empty scene.)

2.3 The Disassembly Process

As a test for our system, consider a peg-and-hole problem shown in Figure 3. It is a test

bed with the same shapes of the top of the peg but with differing holes (square, circular,

or none) Figure 3d, 3c, 3a and with varying surface finish of the peg (smooth as shown in

Fig. 3c and 3d, and threaded as shown in Figure 3b. This fixture has been designed so that
we can test several combinations of manipulative actions. The general priority schema of

control is as follows:

.

.

LOOK. Remember: Position and shape. Start with vision, identify the surface discon-

tinuity of the peg-head vis-a-vis the hole surface, find the position, orientation, surface

normal, and shape of the peg-head.

GRASP. Remember: Position and grasping force. After vision follow up with grasping

in preparation for manipulation. The grasping procedure includes the limitations of the

end-effector, i.e. this procedure utilizes the parameters obtained through calibration

EPs and from the previous step which provides information on geometry of the peg-

head.

Our initial experiments were carried out using a parallel jaws gripper instrumented

with force/torque sensors and tactile arrays. The goal of the grasp action is to verify

correct grasp of an orthogonal parallelepiped peg-head. We define correct grasp to be

a two PLANE contact between the jaws and the peg-head such that the forces and

torques exerted on the sensors are of approximately equal magnitude and opposite

sign.

We use a binary search procedure in three space to verify and/or correct the position,

orientation, and surface normal as computed by vision. The first step in this procedure

is to make an initial grasp of the peg-head. In the general case the initial grasp will be

two POINT contacts between the gripper jaws and the surfaces of the peg-head, See

Figure 4a. Then we measure forces and torques. Using the sign and magnitude of these

mesurements we un-grasp the object, reorient the gripper and attempt another grasp
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.

.

.

until we have (in general) a two LINE contact between the jaws and the peg-head,

as illustrated in Figure 4b. At each iteration, the changes in gripper orientation are

one half of the previous step. This procedure continues until we have a two PLANE

contact, see Figure 4c, and the forces/torques are of equal magnitude and opposite
sign.

MANIPULATE-PULL. Remember: Direction and magnitute of pulling force while in

the hole, and the positions during the departing motion (change in the magnitude of the

pulling force). This procedure adaptively (using force feedback) pulls the peg by finding

the direction which minimizes the reactive force. This procedure uses differential force

feedback to subtract the grasping forces, recorded during the grasping phase.

OBSERVE the action using vision during manipulation. Remember: Shape, size and

position of the two separating parts. An alternative to using vision during manipulation

is to use a move until free primitive action that moves the manipulator slightly in a

direction normal to the pulling force. If the disassembly of the peg is not yet complete

then forces/torques will be exerted on the sensors. The system then returns back to

the previous state, and continues with the manipulate- pull action.

GOAL STATE CHECK. If the two parts are separated then the goal state has been

reached and stop. Notice that there are two ways to measure that the goal state has

been reached. One is to use information from the contact sensors i.e. move until free,

and the other is to use vision during manipulation to detect separation. In this work

we use the former and we plan to integrate the latter soon. Notice that both methods

allow us to measure the unknown length of the peg. Only vision, however, can measure

the shape of the peg as well as the shape of the hole after the disassembly is complete.

This is important in the general disassembly problem.

2.4 The Assembly Process

The fundamental question in disassembly is: Did the system remembered enough? Consider

reversing the above described process: The FEELER is holding the head of the peg and

we have stored the position and shape of the hole. Hence unless something has changed

the FEELER can approach the hole without the LOOKER. The insertion process is the

reverse of manipulate-pull. The goal state is determined by the length of the peg, that was

remembered by the LOOKER after separation of the two parts. We conclude that at least

in this test case the system remembered enough to pass the test.

3 Conclusion

We have defined and outlined our long-term thinking and investigations on Machine Per-

ception that leads us to the latest research program of understanding (Machine Perceptual
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Development). This is an outgrowth of our research on Active Perception, which views per-

ceptual activity as an active process of SEEKING INFORMATION. Naturally this is not

just blind pickup of any information. The system must protect itself by imposing some econ-

omy rules [8]. Even if the perceptual system receives overabundant amounts of information,

again for economy reasons it must be selective in what it stores. Hence the fundamental

problem remains: The REPRESENTATION issue. What is it that the system must have to

seek, measure, and select in order to be able to move and manipulate?

Somewhat similar ideas appear in the work of Donald [5-7], and Pertin-Trocaz and Puget

[10]. They consider a manipulation program automatically generated by a planner according

to spatial and geometric criteria and ignoring uncertainities. Such a program is correct

only if, at each step, uncertainities are smaller than the tolerance imposed by the assembly

task. They propose an approach which consists in verifying the correctness of the program

with respect to uncertainities in position and possibly modifying it by adding operations

in order to reduce uncertainities. These two steps based on a forward and a backward

propagation borrowed from formal program proving techniques are described in a general
framework suitable for robotic environments. Forward propagation consists in computing

successive states of the robot world from the initial state and in checking for the satisfaction

of constraints. If a constraint is not satisfied, backward propagation infers new constraints

on previous states. These new constraints are used for patching the program.

However, we differ in more than one ways from their approach. The most important

difference is the ultimate goal, that is we are interested in the perceptual data reduction

mechanisms rather than in a general plan of a process. We have posed these questions in the

framework of disassembly of one object into two parts and tested the selected, remembered

representation by reversing the process, i.e assembly. Our results are only very modest but

we believe that they are encouraging!
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Figure I. The Disassembly/Assembly System Hardware.
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Figure 2. The Disassembly/Assembly System Block Diagram.
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Figure 3. Various Instances of the Two-Part Disassembly/Assembly Problem.
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Fig. 4a. POINT Contact. Fig. 4b. LINE Contact. Fig. 4c. PLANE Contact.

Figure 4. Grasp with POINT, LINE, and PLANE Contacts. (Only one finger shown).
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